# The 1st International Soft Neuroscience Conference 2019

Sep.18 WED 13:00-19:00 Sep.19 THU 9:00-13:00 TSUKUBA, JAPAN



## **IBRO Satellite Forum**







WILLDYNAMICS

International Congress Center EPOCHAL TSUKUBA, Japan

## The 1st International Sport Neuroscience Conference 2019

Moderator: Masahiro Okamoto (University of Tsukuba, Japan)

|             |                                                            | Moderaior. Masc                                                                                                     | aniro Okamoto (University c                                                                     | n isokobu, Jupunj            |  |
|-------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------|--|
| DAY1 - Sep  | otember 18 Wed.                                            | Speakers                                                                                                            | Chairs                                                                                          | Venue                        |  |
| 12:45-13:00 | Photo Session for Guest S                                  | Speakers                                                                                                            |                                                                                                 |                              |  |
| 13:00-13:05 | Opening Remarks                                            | Takeshi Nishijima<br>(Tokyo Metropolitan University, Japan)                                                         |                                                                                                 |                              |  |
| 13:05-14:00 | Prologue                                                   | Hideaki Soya<br>(University of Tsukuba, Japan)                                                                      | <b>Takeshi Nishijima</b><br>(Tokyo Metropolitan<br>University, Japan)                           |                              |  |
| 14:00-14:10 | Coffee Break                                               |                                                                                                                     |                                                                                                 |                              |  |
| 14:10-14:55 | Session 1                                                  | Pierre J. Magistretti<br>(KAUST, Saudi Arabia and EPFL,<br>Switzerland, IBRO's President)                           | Hideaki Soya<br>(University of Tsukuba, Japan)                                                  |                              |  |
| 14:55-15:05 | Coffee Break                                               |                                                                                                                     |                                                                                                 |                              |  |
| 15:05-15:25 | Session 2<br>Co-sponsored by<br>WILLDYNAMICS               | Takeshi Sakurai<br>Shingo Soya<br>(University of Tsukuba, Japan)                                                    | Kazuya Suwabe<br>(University of Tsukuba, Japan)                                                 | 2F<br>Convention<br>Hall 200 |  |
| 15:25-16:25 | Data Blitz for<br>Poster Presentation                      | All poster presenters                                                                                               | Shingo Soya<br>(University of Tsukuba, Japan)                                                   |                              |  |
| 16:25-17:15 | Poster Session   Coffee Bre                                | ak                                                                                                                  |                                                                                                 |                              |  |
| 17:15-18:45 | Session 3<br>Exercise and<br>Neurodegenerative             | Ignacio Torres Aleman<br>(Cajal Institute, Spain)<br>Zsolt Radak<br>(University of Physical Education, Hungary)     | <b>Tetsuya Shiuchi</b><br>(Tokushima University, Japan)                                         |                              |  |
|             | Disease                                                    | Chia-Liang Tsai<br>(National Cheng Kung University, Taiwan)                                                         |                                                                                                 |                              |  |
| 18:45-19:00 | Closing Remarks                                            | Junichi Nabekura (NIPS, Japan)                                                                                      |                                                                                                 |                              |  |
|             | Photo Session                                              |                                                                                                                     |                                                                                                 |                              |  |
| 19:30-      | Reception / Poster Awar                                    | d Ceremony                                                                                                          | Takashi Matsui<br>(University of Tsukuba, Japan)                                                | 1F Restaurant                |  |
|             |                                                            |                                                                                                                     |                                                                                                 |                              |  |
| DAY2 - Sep  | otember 19 Thu.                                            | Speakers                                                                                                            | Chairs                                                                                          | Venue                        |  |
| 9:00-9:50   | Session 4<br>Sports Performance<br>and Neurorehabilitation | Naznin Virji-Babul<br>(University of British Columbia, Canada)<br>Kimitaka Nakazawa<br>(University of Tokyo, Japan) | Ryoichi Nagatomi<br>(Tohoku University, Japan)<br>Hidefumi Waki<br>(Juntendo University, Japan) |                              |  |
| 0.50-0.55   | Coffee Break                                               |                                                                                                                     |                                                                                                 |                              |  |

| 9:50-9:55   | Coffee Break        |                                                                                 |                                                               | 2F                           |
|-------------|---------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------|
| 9:55-10:50  | Session 5           | Henriette van Praag<br>(Florida Atlantic University, USA)                       | Zsolt Radak<br>(University of Physical<br>Education, Hungary) | Convention<br>Hall 200       |
| 10:50-10:55 | Coffee Break        |                                                                                 |                                                               |                              |
| 10:55-11:50 | Session 6           | Art F. Kramer<br>(Northeasten University, USA)                                  | Hideaki Soya<br>(University of Tsukuba, Japan)                |                              |
|             | Move to 1F Room 102 |                                                                                 |                                                               |                              |
| 12:00-13:00 | Luncheon Seminar    | Maria Llorens-Martin<br>(Centro de Biología Molecular<br>"Severo Ochoa", Spain) | Hideaki Soya<br>(University of Tsukuba, Japan)                | 1F<br>Conference<br>Room 102 |



## Welcome to the 1st International Sport Neuroscience Conference

#### Hideaki Soya

President of ISNC, University of Tsukuba

**On** behalf of the organizing committee, it is our great pleasure to welcome you to the 1st International Sport Neuroscience Conference and to also welcome you to the city of Tsukuba. This conference has been planned by the core members of the Japanese Society of Sport Neuroscience (JSSN), which was inaugurated in 2007 and belongs to the Japanese Society of Physical Fitness and Sports Medicine (JSPFSM), and approved as a satellite meeting of the 10th International Brain Organization (IBRO2019) (Daegu, Sep 21-25) with the strong recommendation of IBRO president Pierre Magistretti. Since the annual meeting of the JSPFSM will also be held in Tsukuba just before IBRO2019, this conference will be jointly hosted by JSSN, IBRO2019 and JSPFSM in Tsukuba.

Tsukuba plays an important role as an international science city with more than 60 national research institutes as well as a national university (University of Tsukuba). The University of Tsukuba was founded in 1872 and the faculty of physical education was opened in 1878, making it the oldest in Asia. Dr. Jigoro Kano, the founder of Judo, served for 25 years as a school principal before building a career at the University of Tsukuba. Dr. Kano's legacy to us is the educational philosophy that our minds are strengthened through proper physical training. Thus, the University of Tsukuba is a fitting place to assemble for this unique international conference.

While nascent, the field of Sport Neuroscience is rapidly growing worldwide and stands to make a substantial impact on human health. A growing number of studies have revealed that our brains are remodeled to become more powerful and efficient with regular exercise habits and sports challenges. Thus, the mission of the JSSN is to explore how the brain works and develops, and how it reaps the wide variety of exercise-induced benefits to cognition, motor control, stress resilience, and high-performance in various people, including vulnerable individuals such as the elderly, in order to design tailor-made exercise prescriptions and to help people develop and maintain healthy exercise habits.

The aim of the conference is to share current topics both with researchers who are engaged in work related to research into exercise and sports that is based on behavioral neuroscience, cognitive neuroscience and neuro-rehabilitation, and with those in fields of physiology, biochemistry, health fitness, and so on. Bringing together talented researchers in such a wide range of fields provides an opportunity to focus on many different aspects of the link between brain health and physical health; for example: How do exercise and sports impact brain functions and health? How does exercise contribute to reducing neurodegenerative diseases? What role do brain functions play in exerting human high performance?

In addition, we are proud to bring you a great synergy of expertise from internationally renowned neuroscientists with several interesting keynote lectures. Further, a datablitz session among keynote speakers at the midpoint of the first day of meetings will focus on addressing current achievements associated with future trends and challenges in scientific research, technology development, and clinical practice. Through this conference we will provide a forum for networking and information exchange that we hope will prove invaluable to current researchers. It is also an opportunity for young scientists and students to explore opportunities for future projects as well as potential for professional development.

Our committee is comprised of the following members: Prof. Pierre J. Magistretti (KAUST, EPFL, IBRO's President), Prof. Junichi Nabekura (NIPS, President of FAOPS2019), Prof. Art F. Kramer (Northeastern Univ.), Prof. Henriette van Praag (Florida Atlantic Univ.), Prof. Ryoichi Nagatomi (Tohoku Univ.), Prof. Hidefumi Waki (Juntendo Univ.), Prof. Ignacio Torres Aleman (Cajal Institute), Prof. Michael Yassa (UC-Irvine), Prof. Zsolt Radak (Univ. of Phys. Edu. Hungary), Dr. Maria Llorens-Martín (Univ. of Autonoma), Assoc. Prof. Takeshi Nishijima (Tokyo Metropolitan Univ.), Assoc. Prof. Tetsuya Shiuchi (Tokushima Univ.), Dr. Kazuya Suwabe, Dr. Genta Ochi, Assist. Prof. Masahiro Okamoto, Assist. Prof. Takashi Matsui and Prof. Hideaki Soya (Univ. of Tsukuba). We would like to thank our community supporters and advocates as well as our hard-working staff and students who have made this meeting possible. Welcome to the conference!

#### PROLOGUE



#### Hideaki Soya, Ph.D.

Director, Advanced Research Initiative for Human High Performance (ARIHHP) Faculty of Health & Sport Sciences, University of Tsukuba, Japan

## Promotion of Brain Fitness with Mild Enjoyable Exercise: Translational Research

Plato wrote, "In order for man to succeed in life, God provided him with two means, education and physical activity. Not separately one for the soul and the other for the body, but for the two together. With these two means, men can attain perfection" (Plato, 4th century B.C.).

Recent neuroscience research shows that for optimal physical and mental performance, exercise is essential. Since benefits induced by daily exercise habits are known to extend to the brain, where neurons and their networks can be remodeled, such habits result in improved mental health and physical performance.

Take, for example, the hippocampus, a region that is responsible for the formation of memories. Aerobic physical activity (APA) can enhance the formation of new neurons (neurogenesis), in the dentate gyrus in the hippocampus (van Praag, 2008 etc.). Thus, APA can lead to an increase in the size of the hippocampus, as it does with muscle tissue, and also to improved memory (Erickson and Kramer et al., 2011). This is also the case for most of the prefrontal cortex, which is responsible for executive functions. Furthermore, aerobic fitness is associated with memory and executive function (Erickson et al, 2009; Suwabe et al., 2017; Colcombe et al., 2004; Hyodo et al., 2016). The close relationship between cardiovascular functions and cognition is thought to be important in terms of evolutionary advantage of Homo sapiens (Lieberman, 2013). The reason for this remains uncertain, although there is a hypothetical relationship for an evolutionary model linking APA and brain size in human, where selection acting to improve APA performance through enhanced metabolic regulation and oxygen transport alters baseline neurotrophic and growthfactor signaling (Raichlen and Polk, 2013). Thus, Plato's words ring true: a healthy body and healthy mind are undeniably linked.

Mental health is a decisive factor in determining our quality of life, and exercise has a positive effect on mental health because it acts on the brain. Exercise impacts stress-related diseases such as depression, neurodegenerative disorders such as dementia, and inactivity-related diseases such as diabetes and obesity. Inactivity leads to an overall weakening of our bodies and minds: this is a global issue that must be addressed. In Japan, escalating healthcare costs recently reached a new high, and many people, including a large number of children, suffer from depression and obesity, often combined with reduced physical fitness. Finding ways to improve adherence to exercise is an urgent issue. But it's hard to maintain motivation with vague promises of future health benefits that are years away.

Fortunately, in many countries, several forms of bodywork such as yoga and tai chi, in which people meditate deeply and become aware of their posture and breathing, are used in daily life. However, there is still very little data for the effects of mild exercise and bodywork. While the ACSM (American College of Sports Medicine) guidelines for exercise prescription define both very light and light intensity exercise, empirical exploration of their beneficial effects is still limited, and most known exercise benefits result from moderate-intensity exercise.

To address this, we've been doing translational research, called the "Brain Fitness" project, which aims to explore exercise conditions that enhance endurance, cognition, and motivation. We developed animal and human exercise models based on lactate threshold level (a physiological measure) and found positive effects of acute mild exercise on brain loci including the prefrontal cortex in human (Byun et al., Neuroimage, 2014), and the hippocampus in human (Suwabe et al., PNAS, 2018) and animals (Soya et al., NRS, 2007). Chronic mild exercise regimens resulted in improved executive functions and spatial memory, respectively. Such beneficial effects were greater in subjects with higher endurance, which opened the possibility that endurance capacity is an important factor in improving cognitive function through exercise that might involve certain factors acting on brain and brawn simultaneously. Thus, we explored two types of exercise regimens, mild and high-intensity interval, which not only improved endurance, but also enhanced hippocampus-dependent neurogenesis and memory, warranting further mechanistic studies. Interestingly, brain dopaminergic regulation increased with both regimens. Furthermore, a wholegenome hippocampal array study revealed some crucial molecular alterations with both regimens (e.g., upregulated APOE and IGF2, and downregulated TNF) (Inoue et al., Plos One, 2015). Therefore, any regimen which is meant to induce cognitive functions may require some level of endurance, as well as anti-inflammatory benefits and motivation factors. Exploration of such factors shall provide new insight into mechanisms by which exercise enhances cognitive functions and mitigates cognitive decline.

During this conference, we will share some of our current studies showing the cognition-enhancing role of very mild exercise on the brain, especially on the hippocampus (animals and human) and the prefrontal cortex (human). Our current findings show that even mild exercise activates the lateral prefrontal cortex (Byun et al., Neuroimage, 2014.) and hippocampus (Soya, BBRC, 2007; Suwabe et al., PNAS, 2018), which in turn improves cognitive functions such as memory and executive functions. Brain-genic androgen (Okamoto et al., 2012, PNAS) and lipids and inflammatory factors (Inoue et al., Plos One, 2015), together with bloodborne insulin-like growth factor (IGF-I) (Nishijima et al., Neuron, 2010) are thought to play an important role in the development of enhanced cognition. One especially interesting finding is the synergistically beneficial effects associated with brain-genic leptin when mild exercise is combined with astaxanthin, a natural pigment used as a supplement (Yook et al, PNAS, 2019).

We would be delighted if these research were to give rise to a boom in mild exercise such as body work, and, thus, in some small way serve to improve overall health both in Japan and throughout the world.



#### Pierre J. Magistretti, Ph.D.

Division of Biological and Environmental Sciences and Engineering, KAUST, Saudi Arabia Department of Psychiatry, University of Lausanne Medical School, Switzerland

## Neuron-Glia metabolic coupling mediated by lactate: role in neuronal plasticity, neuroprotection and neuropsychiatric diseases

A tight metabolic coupling between astrocytes and neurons is a key feature of brain energy metabolism (Magistretti and Allaman, Neuron, 2015). Over the years we have described two basic mechanisms of neurometabolic coupling. First the glycogenolytic effect of VIP and of noradrenaline indicating a regulation of brain homeostasis by neurotransmitters acting on astrocytes, as glycogen is exclusively localized in these cells. Second, the glutamate-stimulated aerobic glycolysis in astrocytes. Both the VIP-and noradrenaline-induced glycogenolysis and the glutamate-stimulated aerobic glycolysis result in the release of lactate from astrocytes as an energy substrate for neurons (Magistretti and Allaman, Neuron, 2015; Magistretti and Allaman, Nat Neurosci Rev, 2018; Cali et al., Front Cell Neurosci, 2019)).

We have subsequently shown that lactate is necessary not only as an energy substrate but also as a signaling molecule for longterm memory consolidation and for maintenance of LTP (Suzuki et al, Cell, 2011). At the molecular level we have found that L-lactate stimulates the expression of synaptic plasticity-related genes such as Arc, Zif268 and BDNF through a mechanism involving NMDA receptor activity and its downstream signaling cascade Erk1/2 (Yang et al, PNAS, 2014). A transcriptome analysis in cortical neurons has shown that the expression of a total of 20 genes is modulated by L-Lactate; of these, 16 involved in plasticity and neuroprotection are upregulated and 4 involved in cell death are downregulated (Margineanu et al. Front. Mol Neurosci, 2018). This set of results reveal a novel action of L-lactate as a signaling molecule in addition to its role as an energy substrate (Magistretti and Allaman, Nat Neurosci Rev, 2018).

These actions of L-Lactate are also relevant for animal models of neuropsychiatric disorders. Indeed we have shown that peripheral administration of lactate exerts antidepressant-like effects in three animal models of depression, Forced Swim test, Open Space Forced Swim Test and chronic corticosterone administration. These behavioral effects of L-Lactate administration are accompanied by changes in the expression of genes that have been involved in mood disorders (Carrard et al, Mol.Psy., 2016).

Finally, we have also shown neuroprotective effects of L-Lactate in vivo in a model of stroke and in vitro on excitotoxicity(Berthet et al, Cerebrovasc. Dis, 2012; Jourdain et al, Sci Reports, 2018).



#### SESSION 2: CO-SPONSORED BY WILLDYNAMICS

Takeshi Sakurai, Ph.D. /Shingo Soya, Ph.D.

#### International Institute of Integrative Sleep Medicine, University of Tsukuba, Japan

## Deciphering the neural mechanism of 'willpower' that motivates voluntary wheel running

To live a creative and active life, it is essential to keep high willpower: an ability to try to overcome difficulties and challenges to achieve goals. However, the biological mechanism Although the reward system, executive function controlled by the prefrontal cortex may be involved, the biological machinery to generate willpower, a unique function of human, has been largely unknown. This research area "Willdynamics" aims to uncover the mechanism of this mental function, and the impact of social/internal environment on willpower.

Orexins, a critical factor in stabilization of sleep/wakefulness state, has been involved in motivated behavior (Sakurai et al., 2014). However, it is still unknown about how the neural circuit controlling arousal is also involved in "willpower". We focused on the role of orexin 1 receptor (OX1R) in voluntary wheel running and found that OX1R deficient mice showed significant decrease of wheel running activity. Intraperitoneal injection of OX1R antagonist (SB334867) to the WT mice also showed significant decrease of voluntary wheel running for several hours. To identify the downstream effector to regulate voluntary wheel running via OX1R signaling, we used OX1R floxed (Ox1rloxp/loxp) mice mated with different Cre driver mice to generate cell-type selective knockout mice. Specific deletion of OX1R in the dopaminergic (DA) neurons using DAT-Cre mice (Ox1rloxp/loxp; DAT-Cre) showed significant decrease of voluntary wheel running, although these mice showed comparable basal locomotor activity with controls. Moreover, acute optogenetic stimulation of DA neurons in the VTA recovered the amount of wheel running activity in Ox1rloxp/ loxp; DAT-Cre mice. These results suggest that the excitatory transmission via OX1R in the DA neurons might be important to generate "willpower" for voluntary wheel running. Selective deletion of OX1R in the noradrenergic (NA) neurons (Ox1rloxp/ loxp; NAT-Cre mice), or serotonergic (5-HT) neurons (Ox1rloxp/ loxp; ePET-Cre mice) also showed significant decrease of wheel running and basal locomotor activity. We are continuing to explore the mechanism by which these monoaminergic systems contribute to the voluntary wheel running activity.

## SESSION 2: DATA BLITZ FOR POSTER PRESENTATION

| No | Title                                                                                                                                                                 | Presenter                         | Affiliation                                                                                                                        |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| 01 | Analysis of gait motion change by intervention using robot suit HAL<br>in acute and chronic stage myelopathy patients decompression surgery                           | Seioh Ezaki                       | Department of Orthopaedic Surgery, Faculty of<br>Medicine, University of Tsukuba                                                   |
| 02 | Modulated muscle control during walking with hybrid assistive limb (HAL) in a patient with severe spinal cord disorder                                                | Hideki Kadone                     | Center for Innovative Medicine and Engineering,<br>University of Tsukuba Hospital, Tsukuba, Japan                                  |
| 03 | Robotic intervention alters muscle coordination in acute post-stroke patients                                                                                         | Chun Kwang Tan                    | Center for Innovative Medicine and Engineering,<br>University of Tsukuba Hospital, Tsukuba, Japan                                  |
| 04 | Effects of lumbar support exoskeleton on muscle coordination in healthy people                                                                                        | Chun Kwang Tan                    | Center for Innovative Medicine and Engineering,<br>University of Tsukuba Hospital, Tsukuba, Japan                                  |
| 05 | Upper Limb Triggered HAL method: Novel gait training methods for<br>patients with complete Quadri/Paraplegia due to chronic spinal cord<br>injuries                   | Yukiyo Shimizu                    | Department of Rehabititation Medicine, University of Tsukuba Hospital                                                              |
| 06 | Elbow extension-flexion training using single joint HAL for patients with spastic cerebral palsy                                                                      | Yukiyo Shimizu                    | Department of Rehabititation Medicine, University of Tsukuba Hospital                                                              |
| 07 | The relationship between higher coincident-timing task performance<br>and eye movement in baseball players                                                            | Tochikura I.                      | Field of Health and Sports, Niigata University of<br>Health and Welfare, Japan                                                     |
| 08 | Effects of electrical muscle stimulation on cognitive performance and cerebral blood flow                                                                             | Takagi Y.<br>*Travel Award        | The University of Electro-Communications                                                                                           |
| 09 | Sympathetic nervous system activity during electrical muscle stimulation and voluntary exercise                                                                       | Kitajima D.                       | The University of Electro-Communications                                                                                           |
| 10 | Table Tennis Players Have Superior Motion Vision in Peripheral Vision                                                                                                 | Ryoma Goya                        | Graduate School of Frontier of Bioscience, Osaka<br>University                                                                     |
| 11 | The functional roles of eye movement in the continuous visuomotor action                                                                                              | Chisa Aoyama                      | Grad. Sch. of Med. Osaka Univ., Osaka, Japan                                                                                       |
| 12 | The effects of acute exercise on the formation process of visual perception                                                                                           | Takaaki Komiyama                  | Center for Education in Liberal Arts and Science,<br>Osaka University, Osaka, Japan                                                |
| 13 | The effects of visual exposure during exercise on visual contrast sensitivity                                                                                         | Kurata Ryo                        | Graduate School of Frontier Biosciences, Osaka<br>University                                                                       |
| 14 | Effects of saccadic eye training on the continuous visuomotor action                                                                                                  | Taiga Mizumori                    | Grad. Sch. of Frontier Biosci. Osaka Univ.                                                                                         |
| 15 | JUDO a Gentle-Way to Smarter Brain -The Effect of JUDO-based<br>exercise program on physical fitness and cognitive function in older<br>people (+65)                  | Sylwester Kujach<br>*Travel Award | Department of Physiology, Gdansk University of<br>Physical Education and Sport, Gdansk, Poland                                     |
| 16 | The effects of long-term resistance and aerobic exercise interventions<br>on neurocognition and neuroprotective growth factors in the elderly<br>with memory problems | Yu-Ju Chen                        | Institute of Physical Education, Health and Leisure<br>Studies, National Cheng Kung University, Taiwan                             |
| 17 | Purine nucleotide salvage pathway: the effect of short term high intensity interval training at the different times                                                   | Rouhollah Haghshenas<br>Gatabi    | Department of Exercise Physiology Faculty of<br>Physical Education, University of Mazandaran                                       |
| 18 | The effects of Virtual Reality Environment on Physiological and<br>Behavioural Responses to Road Cycling                                                              | Nurul Farha Zainuddin             | School of Biomedical Engineering and Health<br>Sciences, Faculty of Engineering, Universiti<br>Teknologi Malaysia, Johor, Malaysia |
| 19 | The effects of daily physical activity and acute moderate exercise on<br>human dopaminergic system: A preliminary study with spontaneous<br>eye blink rate            | Ryuta Kuwamizu<br>*Travel Award   | Exercise Biochem. & Neuroendocrinol., Univ.<br>Tsukuba, Ibaraki, Japan                                                             |
| 20 | Relationship between aerobic fitness and functional connectivity<br>during working memory task in older adults: functional near infrared<br>spectroscopy study        | Kazuki Hyodo                      | Physical fitness institute, Meiji Yasuda Life<br>Foundation of Health and Welfare, Tokyo, Japan                                    |
| 21 | What is the factor which modulate the combined effect of upper body dance-like movement and groove rhythm on executive function?                                      | T. Fukuie                         | Laboratory of Exercise Biochemistry and Neuroendocrinology, University of Tsukuba, Japan                                           |
| 22 | Translating and verifying pediatric acute cognitive dysfunction syndrome "delirium" assessment scale                                                                  | Yujiro Matsuishi                  | University of Tsukuba, Doctoral program<br>in Clinical Sciences-Graduate School of<br>Comprehensive Human Sciences, Tsukuba, Japan |
| 23 | Sustainable resistance exercise mode to improve cognitive function                                                                                                    | Keigo Tomoo                       | Faculty of Sport and Health Science, Ritsumeikan<br>University, Kusatsu, Shiga, Japan                                              |
| 24 | Sustainable aerobic exercise mode to improve executive function                                                                                                       | Takeshi Sugimoto                  | Faculty of Sport and Health Science, Ritsumeikan<br>University, Kusatsu, Shiga, Japan                                              |
| 25 | Science and culture: Krok-Kradeuang, a new exercise equipment for all                                                                                                 | Akkaranee Timinkul                | Bachelor of Thai Traditional Medicine Program,<br>UdonThani Rajabhat University, Thailand                                          |

## Session 2: Data Blitz for Poster Presentation

| No | Title                                                                                                                                                                        | Presenter                          | Affiliation                                                                                                                                            |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 26 | Roles played by midbrain neurons projecting to the ventral medulla in generating central command function                                                                    | Satoshi Koba                       | Division of Integrative Physiology, Tottori<br>University Faculty of Medicine                                                                          |
| 27 | Neural maturation enhanced by exercise-induced extracellular vesicles                                                                                                        | Hyo Youl Moon                      | Seoul National University                                                                                                                              |
| 28 | Exercise-induced increment of corticosterone is essential for exercise-<br>enhanced adult hippocampal neurogenesis                                                           | Sheng-Feng Tsai<br>*Travel Award   | Department of Cell Biology and Anatomy, Institute<br>of Basic Medical Sciences, College of Medicine,<br>National Cheng Kung University, Tainan, Taiwan |
| 29 | Exercise inhibits microglial activation by increasing circulating extracellular vesicles                                                                                     | Sheng-Feng Tsai                    | Department of Cell Biology and Anatomy, Institute<br>of Basic Medical Sciences, College of Medicine,<br>National Cheng Kung University, Tainan, Taiwan |
| 30 | Exercise combined with low-level GABAA receptor inhibition modulates the expression of neurotrophinsin the cerebellum                                                        | Hiroshi Maejima                    | Department of Rehabilitation Science, Faculty of<br>Health Sciences, Hokkaido University, Japan                                                        |
| 31 | Treadmill exercise beneficially contributes to gene expressions relating<br>to synaptic and axonal plasticity in the motor cortex after ischemic<br>stroke in rats           | Takahiro Inoue<br>*Travel Award    | Graduate School of Health Sciences, Hokkaido<br>University                                                                                             |
| 32 | The effects of treadmill exercise in acute stage after stroke on memory function in a novel rat model of vascular dementia                                                   | Naoyuki Himi                       | Dept Physiol2, Kawasaki Med Sch, Okayama,<br>Japan                                                                                                     |
| 33 | Modulatory effects of serotonin on the contrast sensitivity of rats and<br>the visual responses of V1 neurons corresponding to the performance<br>of a visual detection task | Akinori Sato                       | Laboratory of Brain Information Science in Sports,<br>Grad Sch Frontier Biosci, Osaka Univ, Osaka,<br>Japan                                            |
| 34 | Effect of endurance training with and without Magnolia-officinalis<br>extract on nesfatin-1, glucose, glycogen, and ATP levels of<br>hypothalamus and plasma in male rats    | Abbas Ghanbari Niaki               | Department of Exercise Physiology Faculty of<br>Physical Education, University of Mazandaran                                                           |
| 35 | Role of the amygdala and claustrum in cardiovascular control during high-intensity treadmill exercise in rats                                                                | Ko Yamanaka                        | Department of Physiology, Health and Sports<br>Science, Juntendo University, Japan                                                                     |
| 36 | Specific changing patterns of arterial pressure during high intensity of treadmill exercise in rats                                                                          | Kei Tsukioka                       | Grduate School of Health and Sports Science,<br>Juntendo University,                                                                                   |
| 37 | Vitamin B1 analog decreases sleep periods and increases physical activity in rats                                                                                            | François Grenier                   | Exercise Biochem. & Neuroendocrinol., Univ.<br>Tsukuba, Ibaraki, Japan                                                                                 |
| 38 | Hippocampal leptin mediates synergistic benefits of mild exercise by an antioxidant on neurogenesis and memory                                                               | Jang Soo Yook<br>*Travel Award     | Center for Functional Connectomics, Korea<br>Institute of Science and Technology, Seoul, Korea                                                         |
| 39 | Mild exercise activates astrocyte-neuron lactate shuttle in the hippocampus: A role of dopamine                                                                              | Takashi Matsui<br>*Travel Award    | Sport Neuroscience Division, ARIHHP, University of Tsukuba, Japan                                                                                      |
| 40 | Mild exercise regimen from pre-diabetic stage prevents the onset of type 2 diabetes and its related hippocampal memory dysfunction                                           | Subrina Jesmin                     | Laboratory of Exercise Biochemistry and<br>Neuroendocrinology, Faculty of Health and Sport<br>Sciences, University of Tsukuba, Japan                   |
| 41 | Mild, rather than intense, exercise during adolescence attenuates<br>abnormal behavior in prenatal phencyclidine-treated mice                                                | Hikaru Koizumi<br>*Travel Award    | Laboratory of Exercise Biochemistry and<br>Neuroendocrinology, Faculty of Health and Sport<br>Sciences, University of Tsukuba, Japan                   |
| 42 | Running exercise-induced stress response is cooperatively regulated<br>by hypothalamus AVP and CRH: anatomical and pharmacological<br>approaches                             | Kanako Takahashi<br>*Travel Award  | Faculty of Health and Sport Sciences, University of Tsukuba, Japan                                                                                     |
| 43 | The establishment of the rat model for investigating the roles of exercise-increased blood BDNF                                                                              | Moe Yamashita                      | Faculty of Health & Sport Sciences, University of Tsukuba, Japan                                                                                       |
| 44 | Hippocampal glycogen loading with exhaustive exercise enhances<br>hippocampus-dependent learning and memory: A short-term sports<br>conditioning targeting memory function   | Mariko Soya<br>*Travel Award       | Department of Psychiatry, Center for Psychiatric<br>Neurosciences, Lausanne University Hospital,<br>Lausanne, Switzerland                              |
| 45 | Withdrawn                                                                                                                                                                    |                                    |                                                                                                                                                        |
| 46 | Effects of inosine monophosphate and exercise on nNOS-related protein expression in dorsal and ventral hippocampus                                                           | Yuki Tomiga                        | Fukuoka University                                                                                                                                     |
| 47 | Enriched environment does not increase ambulatory physical activity in mice: involvement of social interaction                                                               | Daisuke Funabashi<br>*Travel Award | Human Health Science, Tokyo Metropolitan<br>University, Tokyo, Japan                                                                                   |
| 48 | Orexin receptor 1 is necessary to evoke voluntary wheel running behavior through regulating monoaminergic neurons                                                            | Shingo Soya                        | International Institute of Integrative Sleep Medicine<br>(WPI-IIIS), Tsukuba university                                                                |
| 49 | Effects of Low Intensity Exercise on Amyloid Precursor Protein<br>Production by Iron Metabolism in Alzheimer's Disease Mice                                                  | Dong Hun Choi<br>*Travel Award     | Exercise Biochemistry Laboratory, Korea National<br>Sport University, Seoul, Korea                                                                     |



### Ignacio Torres Aleman, Ph.D.

Cajal Institute, Madrid. Spain

## Insulin peptides as mediators of neuroprotection by exercise

Beneficial actions of physical activity on brain function have been related to a variety of activity-dependent processes triggered by exercise such as enhanced blood perfusion, tissue remodeling (i.e.: neurogenesis and angiogenesis), improved oxidative defence, or even immune modulation. However, ever since the reported exercise-dependent increase in local growth factor production (i.e.: BDNF) more than 20 years ago, evidence of a key role of trophic factors in neuroprotection by exercise has become robust. The nature and sources (i.e.: local, blood, muscle) of trophic inputs to the brain during exercise are probably still not fully described, but an important origin for exercise-mediated trophic input are circulating hormones such as insulin-like growth factor I (IGF-I). During the last two decades we have been analyzing the role of IGF-I as a mediator of exercise neuroprotection and have found that participates in the striking variety of processes known to be positively affected by exercise. Stemming from the original observation that exercise increases brain uptake of serum IGF-I -resembling the capture by other target organs of IGF-I such as skeletal muscle, this growth

factor has been shown to modulate new neuron formation, synaptic plasticity, anti-apoptotic and anti-oxidant defenses, inflammation, and even mood and reward. Due to its wide cytoprotective actions, the role of IGF-I in treatment and prevention of brain diseases by exercise seems logical, whereas its actions on higher brain functions (learning and memory, mood, attention..etc), already found in invertebrates, demands a better knowledge of the processes modulated by IGF-I at the molecular, cellular and system level. In this regard, our recent work in collaboration with other labs is showing an interaction of IGF-I with insulin in brain glucose handling, a cell-specific role of IGF-I in metaplasticity processes, and a direct modulatory role on orexinergic circuits impacting on mood and reward. Collectively, our observations provide molecular targets, cellular mediators, circuits, and specific brain skills affected by insulin-peptides. Hence, modulation of the activity of these hormones by exercise may explain part of its neuroprotective actions while its in-depth understanding will likely provide novel intervention targets in preventing and treating neurodegeneration.



#### Zsolt Radak, Ph.D.

University of Physical Education, Budapest, Hungary

## The link between exercise, microbiome and Alzheimer Diseases

Exercise is documented to be beneficial to vertebrate organisms as it increases skeletal muscle, respiratory-cardiovascular fitness, cognitive functions, and extending health span. It is also known that exercise has powerful effects on microbiome. It has been reported that exercise-induced changes in microbiome has an impact on endurance capacity and neurogenesis. It is also known that regular physical exercise and nutritional intecrvention decreases both the incidence and symptoms intensity in Alzheimer Disease (AD) along with changes in microbiome including those in the gut, while direct link has not been established. We have examined if exercise-induced changes in gut microbiome have beneficial effect on cognitive functions using APP/PS1 mice. Results showed that when APP/PS1 mice subjected to exercise and probiotic treatments significantly over-performed controls in maze tests, while exercise, prebiotic alone and together decreases of beta-amyloid plaques, and increased microglia numbers around plaques. At molecular level improvement in cognitive functions was associated with increased expression 8-oxoguanine DNA glycosylase-1 (OOG1) in APP/PS1 mice. Microbiome data revealed that AD development is associated with leaky gut, which can be prevented by exercise training. Data also show that exercise training increases the levels of anti-in-flammatory microorganism, such as bacteria that are involved in butyrogenesis. These data together show beneficial effects exercise and probiotic on cognitive functions in mouse model, which can be applied in benefit of human.

#### Chia-Liang Tsai, Ph.D.



#### National Cheng Kung University, Taiwan

## Exercise types and neurocognitive performance in mild cognitive impairment

Alzheimer's disease (AD) is a common progressive neurodegenerative disorders. To date, no curative pharmacotherapy exists for AD. Therefore, strategies for prevention and/or delay AD disease onset or progression need to be examined and implemented. Better physical fitness levels induced by regular physical exercise has been recommended as an effective non-pharmacological intervention capable of modifing the neurocognitive disease. Since the individuals with family history of Alzheimer's disease and ApoE-4 (ADFH-ApoE-4) or mild cognitive impairment (MCI) have a higher risk of suffering dementia, the two groups will thus be discussed in this talk. Event-related potentials and event-related neural oscillatory are two electroencephalographic signals which are sensitive enough to identify elderly patients with early cognitive decline or disease progression to MCI and/or AD. Based on neuropsychological problems found in individuals with ADFH-ApoE-4/MCI and executive functioning deficits being associated with poorer physical fitness, the role of physical fitness in the relationship between MCI/ ADFH-ApoE-4 and the neurophysiological performance explored using the ERPs and neural oscillatory will be introduced. Regular physical exercise is a promising nonpharmacological intervention to retard cognitive aging. Potential neurobiological mechanisms could be increased levels of peripheral exercise-induced exerkines, such as exercise-induced neuroprotective growth [e.g., brain-derived neurotrophic factor (BDNF) and insulin-like growth factor 1 (IGF-1)] and pro-angiogenic factors [e.g., vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF-2)] and reduced levels of pro-inflammatory cytokines [e.g., tumor necrosis factor-a (TNFa), Interleukin-1-beta (IL-1β), IL-6, IL-8, and IL-15]. The effects of acute and chronic exercise (aerobic vs. resistance exercise modes) interventions on neurocognitive performance (i.e., behavior and ERPs) and neuroprotective (e.g., BDNF, IGF-1, VEGF, and FGF-2) and inflammatory (e.g., TNF-a, IL-1β, IL-6, IL-8, and IL-15) biomarkers in older individuals with MCI will be stated. In addition, whether the two exercise modes produce divergent effects on these molecular biomarkers and neurocognitive performance in them will also be explored.

#### **SESSION 4:** SPORTS PERFORMANCE AND NEUROREHABILITATION



### Naznin Virji-Babul, Ph.D.

University of British Columbia, Canada

## Brain recovery from sports related concussion: Is there a new normal?

Children and youth are at a greater risk of concussions than adults, and once injured, take longer to recover. The risk of a repeat concussion during recovery is also significantly higher, with subsequent injuries further complicating and prolonging recovery. The increased incidence of sports-related concussion in youth and the potentially serious long-term negative impact on their developing brains has enormous repercussions. Little is still known about the subtle and widespread changes in the brain and the effect of concussion on the developing brain.

My team has been collecting resting state EEG in adolescents with sports related concussion for the past few years. Probing the brain during the "resting state" has emerged as a powerful tool to map the functional organization of the brain. Analysis of resting state functional networks has emerged as a significant new way to investigate brain connectivity between regions that are functionally linked in both healthy and disease/ injury states. We were the first to report significant differences in functional networks in the frontal regions of the brain in adolescents with concussion using resting state fMRI. Importantly, this work showed that functional connectivity measures derived from resting-state EEG signals support the fMRI findings, showing clear concussion related changes in local networks in the dorsolateral prefrontal cortex that subserve cognitive function in adolescents. This work established that resting state EEG signals provide a simple, low-cost, non-invasive and direct measure of brain connectivity that differentiates healthy controls from individuals with brain injury.

Our longitudinal data show that the functional connectivity of the concussed adolescents typically does not return to normal even after one-year post-injury. This may be due to continued neural trauma, reorganization of brain connectivity, or both. In this talk I will discuss our findings showing disturbed brain dynamics in adolescents who have experienced a sport related concussion. I will then present pilot data on interventions directed at facilitating brain recovery using several different methods such as physical exercise and transcranial direct current stimulation (tDCS).

### Kimitake Nakazawa, Ph.D.



#### The University of Tokyo, Department of Integrated Sciences, Japan

## Paralympic brain -compensation and reorganization in human brain-

One of the primary goals of basic neurorehabilitation studies is to figure out the underlying neural mechanisms in the reorganization of central nervous system after rehabilitation interventions. From this perspective the athletes with disabilities, such as Paralympic athletes would be the attractive research model, since they can show the use-dependent plastic changes in CNS after the long-term intervention of intensive physical training.

We have recently found that the brains of Paralympic athletes are reorganized uniquely in such a manner dependent on disability types and athletic-specific training. Factors playing the major roles in the reorganization are most probably use-dependent plasticity and disability-specific compensations.

In this presentation our current data obtained from the following Paralympic athletes with various types of disabilities who have been engaged in different sports will be introduced.

#### A) A long jumper and a high jumper with below knee amputee

Both para-athletes showed bilateral activation of the leg motor area when they were producing knee joint torque during fMRI recording, while no such bilateral motor area activation was observed for the non-amputated leg. The transcranial magnetic stimulation (TMS) study for the high jumper confirmed that the ipsilateral corticiospinal tract of the amputated side knee extensor has the higher excitability and is recruited when he produces knee extension torque to move the prosthesis.

#### B) The archer with congenital upper-limb loss

The highly skilled lower leg function and large expansion of toe motor area in the primary motor cortex were observed with both fMRI and TMS experiments.

#### C) Power lifters with spinal cord injury

The specifically improved upper-limb motor function assessed with the isometric grip force stability test after spinal cord injuries was found. The subsequent experiment showed that the higher stability in grip force was common in persons with complete spinal cord injury regardless of sports participation, although there is still possibility that the higher force stability would be further improved in power lifters.

#### D) A swimmer with cerebral palsy

Electromyographic (EMG) activity and motion recording were performed during swimming for the former Paralympic gold medalist. The EMG activities and motion analysis showed that she performed well-coordinated dynamic swimming movement without spasticity in water, whereas on land she showed a typical hemiplegic type of posture and gait pattern with spastic elbow flexor activity. Although the MRI image of her brain revealed a large lesion in her left sensory-motor area, the remarkable brain reorganization was found to occur with the TMS experiment. The neural mechanisms enabling dynamic swim motion in water will be presented with the current knowledge regarding interaction between autonomic nervous activity and motor system, which can be applied to neurorehabilitation for patients after damages to the CNS such as stroke and spinal cord injury.

In the overall discussion the hypothetical neural mechanisms inducing reorganization of their brains will be presented with clinical implication in neurorehabilitation.

### Henriette van Praag, Ph.D.

Brain Institute and Charles E. Schmidt College of Medicine, Florida Atlantic University, USA

Physical activity and muscle-brain crosstalk

#### connections are subject to exercise-induced plasticity. Another as-Most neurons in the adult central nervous system are terminally pect of our work is to investigate the peripheral triggers that may differentiated and cannot be replaced when they die. However, small populations of new neurons are generated in the mature mediate exercise induced changes in the brain. We have observed olfactory bulb and the hippocampus. In the adult hippocampus, that compounds that activate energy metabolism pathways in muscle, such as AMP-kinase agonist AICAR, can also benefit adult newly born neurons originate from putative stem cells that exist in neurogenesis and memory function. Next, we set out to identify the subgranular zone of the dentate gyrus. The production, survival factors that may be released into circulation from muscle (myokines) and functional integration of newborn hippocampal cells is strongly upregulated by voluntary wheel running in rodents. Enhanced that could influence brain function. Using proteomic analyses, we found that conditioned medium derived from skeletal muscle cell adult hippocampal neurogenesis is correlated with enhanced synaptic plasticity, spatial navigation and pattern separation in rodents. cultures treated with AICAR contains factors that can promote differentiation of neural stem cells in vitro. In particular, we identified A recent focus of our research is to understand the functional contribution of the different structures that provide direct input to new lysosomal enzyme Cathepsin B (Ctsb) as a novel myokine. Analyneurons in the adult brain, as well as the reorganization of new neuses across species in mice, monkeys and humans showed that this ron networks by short-term (one week) or long-term (at least one factor upregulated in plasma with exercise. In humans, these changmonth) exercise. For these studies we combined retroviral labeling es correlated with improved fitness and hippocampus-dependent memory function. A recent focus of work is to determine whether with rabies virus as a retrograde tracer to delineate the circuitry of new neurons during their development in the adult brain. There myokine levels may be upregulated in aging subjects following an is substantial upregulation of innervation of new neurons by the exercise intervention. Overall, our research evaluating the relationship between myokines, adult hippocampal neurogenesis, neurotroentorhinal cortex supporting the proposed role of new neurons in phin levels and memory function aims to further our understanding spatial and contextual memory processes. These studies show that newly born neurons are an integral part of local intra-hippocampal of effects of exercise on the brain.

#### **SESSION 6**



## Art F. Kramer, Ph.D.

Northeastern University, USA

## Walking Towards a Healthy Brain and Mind

The presentation will focus on recent research from our laboratories that has examined the effects of exercise training interventions and physical activity on cognitive and brain health. I will discuss research that has examined changes in brain structure and/or function along with behavioral measures of cognition in interventions lasting from several weeks to 1 year. Study populations will include children, young and middle-aged individuals, and the elderly in addition to a variety of patient groups. Although the focus will be on training to improve cardiorespiratory fitness I will also briefly cover resistance training and well as multi-modal cognitive and exercise training program. Finally, the presentation will identify gaps in the literature and potential solutions.

circuits as well as more distal (sub)cortical networks, and that these

#### LUNCHEON SEMINAR @ 1F CONFERENCE ROOM 102



#### Maria Llorens-Martin, Ph.D.

Centro de Biología Molecular "Severo Ochoa", CSIC-UAM, Madrid, Spain

## Human adult neurogenesis as a mechanism of brain plasticity in physiology and pathology

Memory impairment in Alzheimer's Disease (AD) can be attributed to a significant decline in the functioning of the hippocampal formation, a brain region crucial for learning and memory. Moreover, this structure hosts one of the most unique phenomena of the adult mammalian brain, namely the addition of new neurons throughout lifetime. This process, named adult hippocampal neurogenesis (AHN), confers an unparalleled degree of plasticity to the entire hippocampal circuitry. While synapse loss and consequent death of mature neurons may be responsible for much of the hippocampal malfunctioning in AD, studies in mice suggest that the disease could also target AHN. Nonetheless, direct evidence of AHN in humans has remained elusive. Thus, determining whether new neurons are continuously incorporated to the human dentate gyrus (DG) during physiological and pathological aging is a crucial question with outstanding therapeutic potential. This talk will present solid evidence supporting the occurrence of continued neurogenesis in the human hippocampus of aged healthy subjects and AD patients. By combining human brain samples obtained under tightly controlled conditions and state-of-the-art tissue processing methods, we have identified thousands of immature neurons in the DG of neurologically healthy human subjects up to the ninth decade of life. These neurons exhibited variable degrees of maturation along differentiation stages of AHN. In sharp contrast, the number and maturation of these neurons progressively declined as AD advanced. These results demonstrate the robust persistence of AHN during both physiological and pathological aging in humans, and evidence impaired neurogenesis as a potentially relevant mechanism underlying memory deficits in AD that might be amenable to novel therapeutic strategies. In this regard, our studies in murine models of AD point to neuroprotective effects of lifestyle modifying factors. Solid evidence of the positive effects exerted by physical exercise and environmental enrichment on animal models of neurodegenerative diseases will be presented.

References:

1. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer's disease. Moreno-Jiménez EP, Flor-García M, Terreros-Roncal J, Rábano A, Cafini F, Pallas-Bazarra N, Ávila J, Llorens-Martín M. Nature Medicine. 2019 Apr;25(4):554-560. doi: 10.1038/ s41591-019-0375-9. PMID: 30911133

2. Activity-Dependent Reconnection of Adult-Born Dentate Granule Cells in a Mouse Model of Frontotemporal Dementia. Terreros-Roncal J, Flor-García M, Moreno-Jiménez EP, Pallas-Bazarra N, Rábano A, Sah N, van Praag H, Giacomini D, Schinder AF, Ávila J, Llorens-Martín M. Journal of Neuroscience. 2019 Jul 17;39(29):5794-5815. doi: 10.1523/JNEUROSCI.2724-18.2019. Epub 2019 May 27. PMID: 31133559

3. Novel function of Tau in regulating the effects of external stimuli on adult hippocampal neurogenesis. Pallas-Bazarra N, Jurado-Arjona J, Navarrete M, Esteban JA, Hernández F, Ávila J, Llorens-Martín M. EMBO Journal. 2016 Jul 1;35(13):1417-36. doi: 10.15252/embj.201593518. Epub 2016 May 19. PMID: 27198172

4. GSK-3β overexpression causes reversible alterations on postsynaptic densities and dendritic morphology of hippocampal granule neurons in vivo. Llorens-Martín M, Fuster-Matanzo A, Teixeira CM, Jurado-Arjona J, Ulloa F, Defelipe J, Rábano A, Hernández F, Soriano E, Avila J. Molecular Psychiatry. 2013 Apr;18(4):451-60. doi: 10.1038/mp.2013.4. Epub 2013 Feb 12. PMID: 23399915.



## 検索オンラインカタログサイト

# e-Nacalai Search Version

## e-Nacalai Search Version は……

| 1 複数メーカーの製品を一気に検索                                                           | ▲予加の分析の時の時の<br>単一重 22137.71 数法 化学研究用 249.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1,500 社以上のさまざまな試薬・器材メーカー、<br>1,500 万品目以上の製品の中から一気に検索し最適<br>な製品を探し出すことが可能です。 | П – САХ INFC (1948)<br>П – САХ INFC (1948)<br>(В. 18. Салание<br>(В. 18. Салани                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 各メーカーのカタログやWebサイトを開かなくても<br>最新の情報(在庫状況、標準納期、価格など)をご覧                        | р-Элл (ЭЛТ)<br><u>В Палада</u><br><u>В Канки</u><br><u>D</u> =-CAS 1007/19/8/81<br>DP=-CAS 1007/19/8/81<br><u>В Палада</u><br><u>В Палада<br/><u>В Палада</u><br/><u>В Палада</u><br/><u>В Палада</u><br/><u>В Палада</u><br/><u>В Палада</u><br/><u>В Палада</u><br/><u>В Палада</u></u> |
| いただけます。<br><b>2 メーカーサイトへも簡単アクセス</b>                                         | RXXXXX:71         25:575         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85         2:85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                             | 12 Per-ytworks<br>13 March 12 Per-ytworks<br>14 March 12 Per-ytworks<br>16 March 12 Per-ytworks<br>17 Or 20 Per-ytworks<br>17 Or 20 Per-ytworks<br>19 March 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 製品情報<br>▲<br>タメーカーが提供するデータシートやプロトコール、                                       | 1.4.78rc/working<br>INUMERIC [06:59:00]<br>INUMERIC [06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ログーカーが提供するケータンードやクロドコール、<br>メーカー在庫数など製品に関する情報をご覧いただ<br>けます。                 | Liften/seedanine dby/doctionde         anital<br>Boxen/seedanine         anital<br>Boxen/se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7 £ 9 °                                                                     | 1,1.1 http://www.inc.inc.inc.inc.inc.inc.inc.inc.inc.inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3 ご不明な点はオンラインで問い合わせ                                                         | 1.1.79xr/predictions Dibydocklook<br>INFORMATION Discontinues (Disponsibility)<br>INFORMATION DISCONTINUES (Discontinues)<br>INFORMATION DISCONTINUES (Discontinues)<br>INFORMATION DISCONTINUES (Discontinues)<br>INFORMATION DISCONTINUES (Discontinues)<br>INFORMATION DISCONTINUES<br>INFORMATION DISCONTINUES<br>INFORMATIONALISATIONALISATIONALISATIONALISATIONALISATIONALISATIONALISATIONALISATIONALISATIONALISATIONALISATIONALISATIONALISATIONALISATIONALISATIONALISATIONALISATIONALISATIONALISATIONALISATIONALISATIONALISATIONALISATIONALISATIONALISATIONALISATIONALISATIONALISATIONALISATIONALISATIONALISATIONALISAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 調査依頼画面の表示方法(3通り)                                                            | 1.1.ProcyberoflammeRammeRammeRammeRammeRammeRammeRamme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1.ログイン後画面下部にある右図をクリック<br>2.検索結果0件だった場合<br>3.検索結果表示後                         | 1.4 Perglemadarine 13/2<br>Teorio Research<br>Chemicals Inc. — P315840 Sing 19:557<br>34.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 「ご希望の製品が見つからない場合」のリンクをクリック ·Nacalai Search Version 0                        | D検索機能はこんなにすごし                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1 HPLC 検索                                                                   | 2 構造式検索                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ・HPLC カラムに特化した専用検索<br>・カラム名称からだけでなく、分離モード、用途                                | <ul> <li>各社が取り扱う製品の中から一気に横断検索</li> <li>Marvin Sketch で描画した構造式の保存も可能</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (化合物)、USP コード、官能基などから検索可能<br>・試薬類やフィルターなども検索可能                              | ・IUPAC 名も表示可能<br>・検索結果から HPLC Application を表示                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

- ・14 社、約 15 万品目(2019年8月現在)を対象に、 ・EIA / ELISA Kit 製品に特化した専用検索
- ・順次対象メーカー、商品を拡大中



## 5 その他検索機能

- ・製品名検索 ·分子式検索 ・製品コード検索 ・物性数値範囲検索
- ・CAS RN®検索 (分子量、融点、沸点、引火点)
- ・CI.No 検索 ・EC.No 検索
  - ・分野・用途別検索 ・メーカー指定検索

※CAS RN® は American Chemical Society の登録商標です。

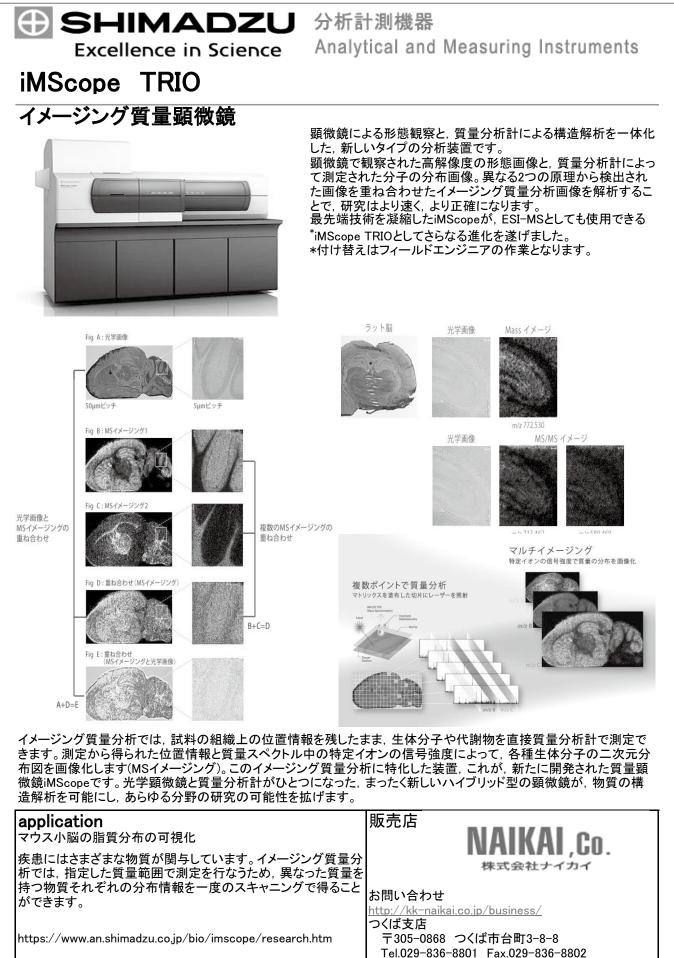
ナカライテスク株式会社

〒 604-0855 京都市中京区二条通烏丸西入東玉屋町 498

#### 加州快糸

価格・納期のご照会

- ・抗体メーカー 約400社
- ・掲載品目数約80万品目を横断検索!



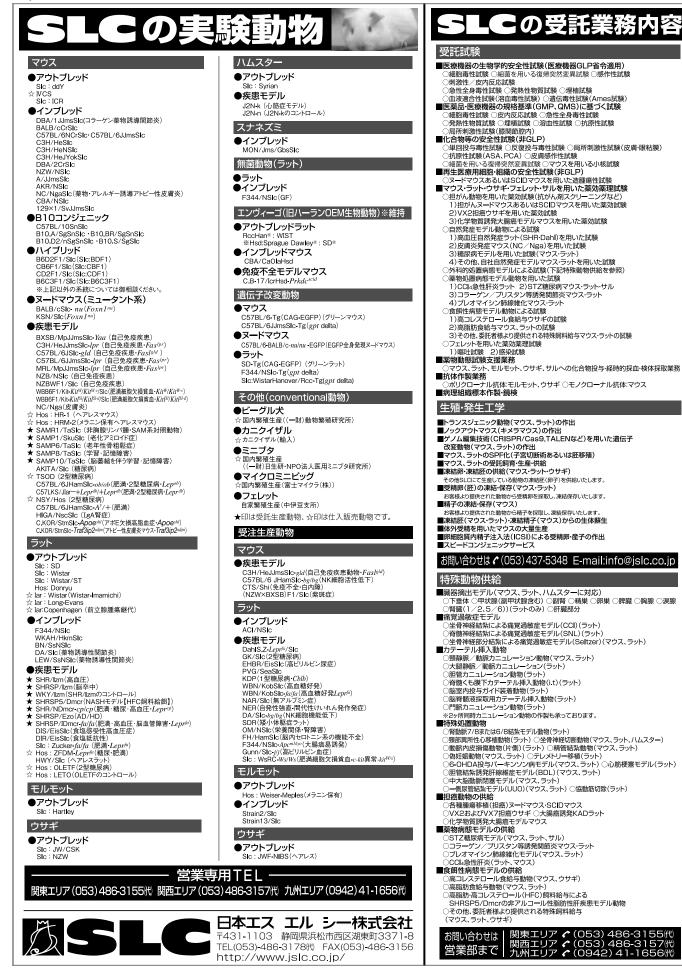

| 製品に関するご照会 0120-489-552 · Web site : https://www.nacalai.co.jp/ss/Contact/ • TEL : 075-211-2703

https://www.nacalai.co.jp/

お問い合わせ






スポーツ。水。アミノ酸 「運動中に水を飲むな」。つい二十年ほど前まで、当然のよ うに行われていた指導法です。しかし今では、こまめに水 を摂るのが常識。スポーツは科学的見地から語られるよう になったのです。さて、水分補給については大勢が知ると ころとなった。だがまだ、大事な補給がされずにいる。アミノ 酸です。運動中の肉体は、想像以上に酷使されている。 最高のパフォーマンスを発揮するためには、筋肉中のたん ぱく質をすばやく補う必要がある。アミノ酸は、そのたん ぱく質をつくる唯一の栄養素なのです。そう、必要なのは 水だけではない。水といっしょにアミノ酸が不可欠。これは 宣伝文句でもなんでもありません。スポーツ栄養科学が 明らかにした事実でしかない。気づいている人は、当たり 前に飲んでいます。アミノ酸で、あな たのスポーツが大きく変わる。合言

葉は「スポーツ。水。アミノ酸。」です。

マミノバイタル。

Eat Well, Live Well. 

#### Japan SLC,Inc.



YATORO ELECTRONICS CO., LTD.





**TECHNICAL VISIT** テクニカル ビジット

テクニカルビジットとは、先進技術を学びに行く視察旅行のこと。 産業視察だけでなく、行政視察も含まれます。 現地の企業や行政機関、専門機関などの訪問先との交渉や視察の コーディネートが必要となることから、テクニカルビジットを扱 う旅行会社は視察分野ごとの専門知識を持っていること、もしく は専門代理店との連携が必須条件となります。 弊社スタッフは、20年以上の経験者も多く、必ずお客様のご希 望に添えるご提案をさせていただきます。

○→##目型A 日本旅行業協会

## MICELt?

MICEとは、企業等の会議(Meeting) 企業等の行う報奨・研修旅行(インセンティブ旅行) (Incentive Iravel)、国際機関・団体、字会等が行う国際会議(Convention)、展示会・ イベント(Exhibition/Event)の頭文子のことであり、多くの集変交流が見込まれるビジネ トなどの総称です。MICEは、企業・産業活動や研究、学会活動等と関連している場合が多し 一般的な観光とは性格を異にする部分が多いものです。このため、観光振興という文脈での のではなく、MICEについて「人が集まる」という直接的な効果はもちろん、人の集積や交 生する行加価値や大局的な意義についての認識を高める必要があります。 具体的には、以下に掲げる3つの主要な効果が考えられます。 見本市、 う文脈でのみ捉えるの集積や交流から派

#### [1] ビジネス・イノベーションの機会の創造

MICE開催を通じて世界から企業や学会の主要メンバーが我が国に集うことは、我が国の関係者と海外の関係 者のネットワークを構築し、新しいビジネスやイノベーションの機会を呼び込むことにつながります。

#### [2] 地域への経済効果

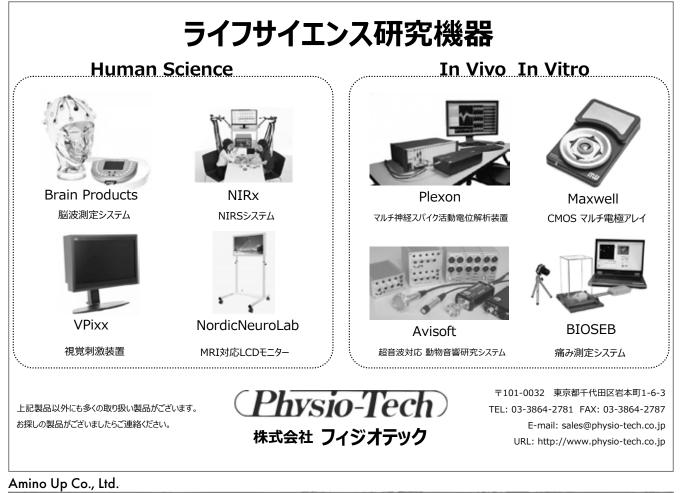
MICE開催MICE開催を通じて世界から企業や学会の主要メンバーが我が国に集うことは、我が国の関係者と海外の関係者の ネットワークを構築し、新しいビジネスやイノベーションの機会を呼び込むことにつながります。を通じた主催者、参加者、出展者等の消費支出や関連の事業支出は、MICE開催地域を中心に大きな経済波及効果を生み出します。MICEは会議開催、宿泊、飲 食、観光等の経済・消費活動の裾野が広く、また滞在期間が比較的長いと言われており、一般的な観光客以上に周辺地域への 経済効果を生み出すことが期待されます。

#### [3] 国・都市の競争力向上

[3] ■ 都市の競争力向上 国際会議等のMICE開催を通じた国際・国内相互の人や情報の流通、ネットワークの構築、集客力などはビジネスや研究環境 の向上につながり、都市の競争力、ひいては、国の競争力向上につながります。海外の多くの国・都市が、国・都市の経済 戦略の中で、その達成手段の一つとし国際会議等のMICE開催を通じた国際・国内相互の人や情報の流通、ネットワークの構 築、集客力などはビジネスや研究環境の向上につながり、都市の競争力、ひいては、国の競争力向上につながります。 海外の多くの国・都市が、国・都市の経済戦略の中で、その達成手段の一つとしてMICEを位置付け、戦略分野/成長分野における産業振興、イノベーション創出のためのツールとして国際会議や見本市を活用しており、我が国においてき、MICEを運 潮市競争力向上のツールとして認識し、活用することが重要です。CMICEを位置付け、戦略分野/成長分野における産業振興、イノベーション創出のためのツールとして国際会議や見本国際会議等のMICE開催を通じた国際・国内相互の人や情報の 流通、ネットワークの構築、集客力などはビジネスや研究環境の向上につながり、都市の競争力、のしいては、国の競争力向 上につながります。海外の多くの国・都市が、国・都市の経済戦略の中で、その達成手段の一つとしてMICEを位置付け、戦 略分野/成長分野における産業振興、イノベーション創出のためのツールとして国際会議や見本市を活用しており、我が国 においても、MICEを国・都市競争力向上のツールとして認識し、活用することが重要です。



#### 観光庁長官登録旅行業第2032号 タビットツアーズ株式会社 〒300-2631茨城県つくば市沼崎2686 https://www.tabbit.jp/ TEL029-869-6655 E-mail:tsukuba@tabbit.co.jp 営業時間 月~金 10:00~18:00(土日祝 お休み)




国内の団体移動にはバスが不可欠。 自社バスでのご案内が出来ますのでご安心下さい。大型・中型・ 小型バスがございますので、お客様のニーズにお応えいたします。

## KYOKKO BUSSAN CO., LTD.



TEL. 03(3814)1635(代) FAX. 03(3814)7564(代) WEB. http://kykb.jp/ Email. support@kykb.jp





株式会社アミノアップ <sup>〒004-0839</sup> TEL(011)889-

〒004-0839 札幌市清田区真栄363-32 TEL(011)889-2277 FAX(011)889-2288

AminoUp

**Eicom Corporation** 



Inter Reha Co., Ltd.

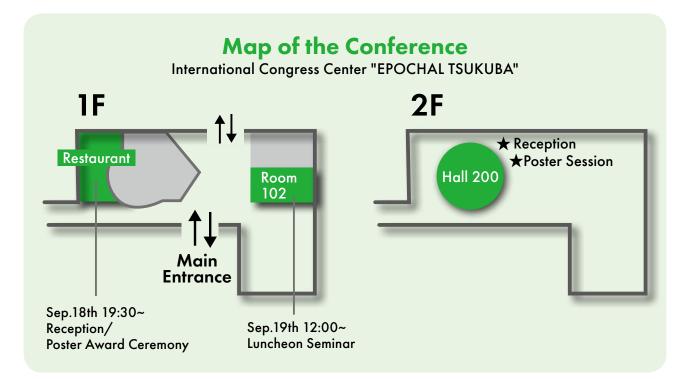


## **GRAIL** Gait Real-Time Analysis Interactive Lab



Motekforce Link

歩行分析、歩行訓練に対して、トータルソリューションを提供します。 左右独立した床反力計内蔵デュアルベルトトレッドミル、モーションキャプチャシ ステム、バーチャルリアリティ環境、ビデオカメラなどを合わせた多目的なシス テムです。


様々な条件下での歩行訓練が可能で、より早くより良いリハビリテーションを 提供することができます。 キネティクス・キネマティクスデータを含む歩行パラメータをリアルタイムに モニタリングし、解析することが可能です。

インターリハ株式会社 **Inter Reha** Accessed Rescalation of Reference Accessed and Accessed Rescalation of Reference Accessed Ac



Kyorin Shoin Co. Ltd.





### The 1st ISNC Committee Members

| President                  | Hideaki Soya                                                                                                                                                                                                                                                                                                                        |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vice-Presidents            | Pierre J. Magistretti, Jyunichi Nabekura                                                                                                                                                                                                                                                                                            |
| Core members               | Ichiro Kita, Toshio Mikami, Ryoichi Nagatomi, Takeshi Nishijima, Tetsuya Shiuchi, Nobusuke Tan,<br>Kiyoji Tanaka, Hidefumi Waki                                                                                                                                                                                                     |
| International core members | Joon-Yong Cho, Art F. Kramer, Maria Llorens-Martin, Hyo-Youl Moon, Henriette van Praag, Zsolt Radak,<br>Ignacio Torres Aleman, Michael Yassa                                                                                                                                                                                        |
| Executive committee chair  | Masahiro Okamoto                                                                                                                                                                                                                                                                                                                    |
| Executive committee        | Kyeongho Byun, Takemune Fukuie, Hikaru Koizumi, Takashi Matsui, Genta Ochi, Kazuya Suwabe                                                                                                                                                                                                                                           |
| Staff                      | Yoshiko Asao, Chorphaka Damrongthai, Francois Grenier, Toshiaki Hata, Taichi Hiraga, Mitsue Honma,<br>Ryouma Kinoshita, Jyunko Kobayashi, Ryuta Kuwamizu, Rin Nakagawa, Kengo Nakamura,<br>Leandro Kansuke Oharomari, Seohee Park, Ha Min Seong, Takuta Shibasaki, Kanako Takahashi,<br>Mana Yakushiji, Ayumu Yamada, Moe Yamashita |

### **Supporting Members**

味の素株式会社 (Ajinomoto Co., Inc.) インターリハ株式会社 (Inter Reha Co., Ltd.) エイコム株式会社 (Eicom Corporation) 株式会社アイ・シー・エム (ICM CO.Ltd.) 株式会社アミノアップ (Amino Up Co., Ltd.) 株式会社古林書院 (Kyorin Shoin Co. Ltd.) 株式会社講談社 (Kodansha Ltd.) 株式会社ナイカイ (NAIKAI, Co.) 株式会社フィジオテック (Physio-Tech Co., Ltd.) 旭光物産株式会社 (KYOKKO BUSSAN CO., LTD.) 公益社団法人日本エアロビック連盟 (Japan Aerobic Federation) タビットツアーズ株式会社 (TABBIT CO., LTD.) ナカライテスク株式会社 (NACALAI TESQUE, INC.) 日本エスエルシー株式会社 (Japan SLC, Inc.) 日本薬品工業株式会社 (Nihon Pharmaceutical Industry Co., Ltd.) バイオリサーチセンター株式会社 (Bio Research Center Co. Ltd.) ヤトロ電子株式会社 (YATORO ELECTRONICS CO., LTD.)

### **Acknowledgments**

This conference is supported in part by the program for promoting the enhancement of research universities, Advanced Research Initiative for Human High Performance (ARIHHP) of University of Tsukuba, The Nakatomi Foundation, the Japan Society for the Promotion of Science Grants 16H06400 (WILLDYNAMICS), The Uehara Memorial Foundation, The Naito Foundation, Narishige Neurosciecnce Research Foundation.





https://sportneurosci.taiiku.tsukuba.ac.jp

